
JOURNAL OF COMPUTATIONAL PHYSICS 59, 177-192 (1985)

On the Construction of the Voronoi Mesh on a Sphere

JEFFREY M AUGENBAUM

NASA-Goddard Space Fli,qht Center, Code 611, Greenbelt, Maryland 20771

AND

CHARLES S. PESKIN

Courant Institute of Muthemuticul Sciences.
251 Mercer Street, New York, New York 10012

Received September 16, 1983; revised May 31, 1984

A new construction of the Voronoi mesh on the sphcrc is presentcd.The main feature is that
the algorithm adds points one at a time until the fmal Voronoi mesh is built up. By adding
one point to an existing Voronoi mesh of K points, only local changes are needed to construct
a Voronoi mesh of K+ 1 points. This construction is particularly well suited to time-depen-
dent problems since using information from the Voronoi mesh at the previous time step
allows us to reduce the construction to O(N) operations when the two configurations are
close, while the algorithm does not break down when they are far apart. Numerical
experiments are presented to substantiate the O(N) operation count for a “typical” case.
(0 1985 Academic Press, Inc.

1. INTRODUCTION

Ever since the developement of modern high speed computers, most of the work
on large scale hydrodynamic codes and particularly on meteorological codes have
centered around those of Eulerian type. This is due to their ease in programming
and higher order of accuracy. However, one of the biggest drawbacks of Eulerian
methods is the presence of the nonlinear convective terms ti. VU which leads to
inaccurate representations of advection and discontinuities.

An alternative, and conceptually simpler, approach is to use a Lagrangian
method. In such a method the fluid particles themselves are tracked and equations
are derived based on local spatial interactions. In this formulation the nonlinear
convective terms do not appear. The main drawback with the Lagrangian for-
mulation, however, is that these local spatial interactions are time dependent. That
is, at each time level, one must know the current neighbors of a given particle to
compute accurately the forces acting on the particle. Thus a grid which is con-
tinuously deforming and always linking nearest neighbors is needed. Such a grid,

177
0021-9991/85 53.00

Copyright 0 1985 by Academic Press, Inc
All rights of reproduction in any form reserved.

178 AUGENBAUMAND PESKIN

the “Voronoi diagram” or “Voronoi mesh” has been around for a long time [171,
but has only recently been introduced into hydrodynamics codes. (See Peskin [131,
Augenbaum [l-3], and Trease [16]. An alternate approach using the dual
Delaunay triangulation has been introduced by Crowley [6], Fritts and Boris [9],
and Dukowicz [7].)

While there have been several succesful Lagrangian or quasi-Lagrangian codes
used for gas dynamics and incompressible flows (e.g., FLAG [6], PIC [lo], and
ALE [11 I), there has been very little application of such methods to meteorological
problems. A first attempt was made by Mesinger [121, using a set of floating points
to solve the shallow water equations on a sphere. In this method all points within a
fixed radius from a given point are used in computing the derivatives at that point.

Mesinger compares his method to existing Eulerian schemes and reports very
encouraging results. However, no mention is made of an operation count for
finding neighbors particularly when large deformations occur after a number of
time steps, nor is there any attempt to optimize the grid algorithm.

In [1, 31, Augenbaum introduced a Lagrangian scheme for the shallow water
equations on a sphere based on the use of the Voronoi diagram. In the present
paper we describe, in detail, this Voronoi construction which is a generalization of
a planar algorithm introduced by Peskin [131. (References [13 and 191 also dis-
cuss the use of the Voronoi diagram for the solution of the incompressible
Navier-Stokes equations.) Other constructions for the Voronoi diagram can be
found in [S, 8, 151.

2. CONSTRUCTION OF THE VORONOI MESH

Partition cf the Sphere

Suppose we are given a collection of N points { 8, ,..., Xn} on the unit sphere S in
R3. These points can be used to generate a partition of S into convex spherical
polygons which overlap at most by having an edge in common. Let

I-I,,= {X: IX-X,1 d IZ--J?,I and IX12= l},

P, = fi H,,.
/= 1
l#k

(2.1)

(2.2)

The borders of P, are made up of points X (on S) such that 1% - Fkl = IX - x,1 for
some 1. Accordingly the borders are subsets of great circles. These circular arcs are
the perpendicular bisectors of the arcs connecting xk and z,. Thus the Pk are
spherical polygons. They are convex polygons because they are constructed as
intersections of convex sets. (Convexity is usually a property of subsets of a linear
space. The unit sphere is not a linear space, but it is embedded in the linear space
R’. With every subset A on the sphere, we can associate a cone A’= {Xc R’:

VORONOI MESH ON A SPHERE 179

x = a~?, CI > 0, y E A }. We say that A is “convex” iff A’ is convex in the usual sense.
It follows that intersections of convex sets are convex, as usual. In particular, the
cone corresponding to a hemisphere is a half-space, which is convex. Therefore all
intersections of hemispheres are convex spherical polygons.) A point X on S, in the
interior of P, satisfies

IX-Xkl <IX-x,1 for all I # k. (2.3)

Because of the strict inequality, it is impossible for (2.3) to hold for fixed X and
more than one value of k, which proves that the interiors of the spherical polygons
Pk do not overlap. On the other hand, every point X E S is in at least one of the
spherical polygons P,. To prove this, just pick k to minimize IX - Xkl. These con-
siderations justify the statement that we have generated a partition of S into convex
spherical polygons which overlap at most by having an edge in common. This con-
figuration depends on the generating points {x, ,..., Ym} and it is a natural partition
in the sense that the kth spherical polygon contains in its interior precisely those
points of S which are closer to Xk than to any other generating point.

Main Algorithm

The required polygonal network is called a Voronoi diagram [171 (see Fig. 1).
An optimal algorithm for the construction of the polygons (in the plane) is known
with an operation count O(Nlog N) [143. This operation count is optimal for the
situation in which the positions of the generating points are arbitrary. Our purpose
is not to extend this algorithm to the sphere. Rather we shall describe a new
algorithm that can be used in either the spherical or planar case and that is par-
ticularly well suited to time-dependent problems. In such problems, the changes in
configuration of the generating points at any given time step result in few, if any,
changes in the topological structure of the polygons. When changes in structure do
occur, they are local in character.

SPHERICAL

VORONOI

VORONOI

MESH .

FIG. I. Portion of a Voronoi diagram or mesh.

180 AUGENBAUM AND PESKIN

These considerations suggest that we aim at an algorithm in which the number of
operations depends on how close the current configuration is to the previous con-
figuration. The operation count should be O(N) when the two configurations are
close, but the algorithm should not break down no matter how far apart the two
configurations are. We shall describe such an algorithm in the spherical case. The
planar case is very similar, and we omit the details.

The algorithm is based on certain observations concerning the corners of the
polygons. Since the edges are arcs equidistant between pairs of generating points,
their intersections (the corners) are equidistant from three of the generating points.
The three generating points Xi, Y,, and Yk define a plane that intersects the sphere
dividing it into two spherical caps (see Fig. 2). We shall determine the center of one
of these spherical caps: the one that lies to the left of its circular boundary when
that boundary is traversed in the direction Xi -+ Y, -+ X,. The formula for the cen-
tral point is

(F,-~Jx(X,-Xi)
R(i..~~k)=,(~,-Bi)x(~~-Xi),

x,xx,+x,xx,+x,x~;
= ~x,x~,+x,x~k+x,xx;~’ (2.4)

Clearly, the point x’ (i, j, k) lies on the unit sphere, remains invariant under an even

FIG. 2. Three points (I,, y,, X,) on sphere taken in counterclockwise order determine center of
spherical cap cut by plane through sphere.

VORONOI MESH ON A SPHERE 181

permutation of (i, j, k), and changes sign under an odd permutation of (i, j, k). To
check that X“(i, j, k) is equidistant from xi, xj7,, and Xk , let I= i, j, or k and
evaluate

IF(i, j, k)-X1,1*= IRc(i, j,k)12-2F’(i, j, k).X,+ IX,12

= 2(1 - F(i, j, k) * XI).

Therefore it is sufficient to show that P(i, j, k) . x, has the same value for 1= i, j, or
k. Using the triple-scalar-product identity (a x 6. C = 2.6 x C), it is easy to see that
in all three cases

- Xi~(XjXX~)
~(i,j,k).X,=lX,x~j+X,x~~+~~xBi,; 1 = i, j, k.

This completes the proof that P(i, j, k) is the common corner of the spherical
polygons Pi, Pi, Pk if the following criteria are both met:

(i) p(i, j, k)ES,

(ii) for every 1, IX, - J?‘(i, j, k)l b r(i, j, k),
where r(i, j, k) = IX,-F(i, j, k)l = Izj-F(i, j, k)l = IXk--F(i, j, k)j.

If there is some 1 that violates (ii), we say that P(i, j, k) is a broken corner and that
it has been broken by the point Z,. In the foregoing test for a broken corner we use
the Euclidean (chord) distance which is monotonic function of the spherical dis-
tance.

All of the corners can therefore be found by the following simple (but expensive)
procedure, which we state for conceptual purposes only: Look at all triples of
generating points and test to see whether conditions (i) and (ii) are satisfied. The
number of triples is 0(N3), and the number of tests per triple is O(N), so the
operation count for this algorithm is O(N4).

We can do better, however, by adding the generating points one at a time. Sup-
pose the polygonal structure generated by the points xi,..., Xk- i is already known.
The changes in the structure that result when the kth point is added have been
described by D. Goldfarb (unpublished) as follows (see Fig. 3).

Each edge of the new spherical polygon P, lies entirely within one of the old
spherical polygons P,. and terminates on one of the old edges of Pks. To prove this,
consider an arbitrary point X on the common edge of the new spherical polygon Pk
and the old spherical polygon P,,. We have

I-“-q = IX-X/& <Ii-x,1 all I

In this statement, the equality follows from the fact that edges are equidistant
between pairs of generating points, and the inequality holds because otherwise X
would be in the interior of P, (for some 1 different from k and k’) and not on
Pk n P,,. On the othe hand, the inequality also shows that X was in Pks before the

182 AUGENBAUM AND PESKIN

FIG. 3. When a new point is added (free solid circle), some of the old corners are swallowed up in
the interior of the new polygon (dashed lines). These broken corners form a connected net in the old
graph of corners (solid lines). There is exactly one new corner on each edge joining a broken and an
unbroken corner.

point yk was added. Similarly, let X be a terminal point of the new edge P, n P,, .
That is, let X be a new corner, equidistant (say) from the three points Zk, Xk,, and
Xk9,. Then by the same argument as above,

Ix-Jzkl = Ix-/Tk’J = Ix-xk”l d IX-x,1 all [;

and it follows as above that X lies on the old edge common to Pks and P,,,.
Now, let B, be the set of all spherical polygons that are cut by the addition of the

point Xk. Clearly, B, is a connected set, since a walk through all of the old
spherical polygons in B, is constructed simply by following the (new) edges of P,.
This walk can be constructed without the edges of P, being given in advance. Let
one of the spherical polygons P,. E B, be given. Simply construct the arc equidistant
between 1, and Zk. in P,,. Where this segment of arc encounters the border of P,.,
it points to another element of B,. The procedure can therefore be continued until
the entire spherical polygon P, is constructed and the walk through B, is complete
(see Fig. 3).

It follows from this construction of Goldfarb’s that the set of corners broken by
the addition of the point Xk is also a connected set. To prove this, we first note that
the set of broken corners in any one spherical polygon is connected, since all of
these corners lie on one side of a great-circle arc and since the spherical polygons
are convex. Then, to construct a walk through all of the broken corners, we just
follow the walk outlined above covering all of the broken corners of each spherical
polygon as that polygon is encountered. Successive polygons on this walk always
have exactly two corners in common, exactly one of which is broken, so there is no
difficulty in stepping from one spherical polygon to the next.

These observations allow us to use the following algorithm. To update the
polygonal structure when the Kth point is added:

VORONOI MESH ON A SPHERE 183

(i) Search for a broken corner.
(ii) Search for all of the broken corners (a connected set).

(iii) Find all edges that join broken corners and unbroken corners. Every
new corner is located on such an edge, and every edge of this kind has exactly one
new corner.

(iv) Construct the edges of the spherical polygon P, by joining the
appropriate pairs of new corners.

To provide an operation count for this algorithm we need to recall certain facts
concerning the numbers of corners and edges in a spherical Voronoi diagram
generated by N points. We derive these facts from Euler’s formula for an arbitrary
graph on the surface of a sphere,

f-e+v=2, (2.5)

where f is the number of faces (in our case f = N), e is the number of edges, and v
is the number of vertices (corners). We consider only the generic case, in which
every corner is a junction of exactly 3 edges. (If this is false, it can be made true by
an arbitrarily small perturbation of the generating points.) Then, since it is also true
that each edge has exactly 2 vertices (corners), we have

2e=3v. (2.6)

Combining this with Euler’s formula and substituting N for f, we obtain

v=2N-4, e=3N-6. (2.7)

Thus the total number of corners and edges in the Voronoi diagram is known in
advance and grows only linearly with N. These facts are very convenient from the
standpoint of allocating storage. Moreover, the average number of sides (or ver-
tices) per polygon is given by

n-2e-3v-6-12
N N- y (2.8)

so the typical polygon (for large N) is a hexagon.
We shall give a “typical-case” (as opposed to a worst-case) operation count for

the algorithm outlined above. Step (i), the search for a broken corner, may require
O(N) steps (this is actually a worst-case estimate since the number of corners is
2N - 4). Once a single broken corner is found, the search for all broken corners
(step (ii)) requires a numbr of operations that is typically independent of N (again,
in the worst case the search for all broken corners would require O(N) steps since
the totd number of corners is 2N- 4). The reason for this is that, in the typical
case, the new polygon has 6 corners, so only 4 old corners were broken (the net
increase in the number of corners must be exactly 2). Moreover, we have proved

184 AUGENBAUM AND PESKIN

that these 4 broken corners form a connected set in the old Voronoi diagram, so
they are easily found without extensive searching. Similarly, once the broken cor-
ners have been found, we know immediately where to locate the (roughly 6) new
corners (step (iii)) and how to connect them to generate the new polygon (step (v)).
In short, steps (iit are local and require a number of operations which is
related to the number of sides of a single polygon and which is therefore indepen-
dent of N.

In summary, the number of operations in step (i) is O(N) (in the typical case and
in the worse case), and the number of operations in steps (ii)- is independent of
N is the typical case and O(N) in the worst case. Since the procedure is used for
each point as it is added, the number of operations required to construct the entire
polygonal structure is O(N’) both in the typical case and in the worst case. An
important difference between the typical case and the worst case will appear below,
however.

Now consider the situation in which the generating points are all moving
simultaneously and we are faced with the task of constructing the Voronoi diagram
at successive times t = n At, n = 1, 2,.... This situation arises, for example, in
Lagrangian fluid dynamics computations in which the generating points move as
fluid markers. In such a case, we should be able to obtain considerable savings in
computer time by taking advantage of information obtained when the Voronoi
diagram was constructed at the previous time step. The algorithm described above
does not seem applicable to this situation, since it builds up the polygonal structure
from scratch by adding the generating points one at a time. Despite this, the follow-
ing simple device makes it possible to take advantage of the previous time step and
to reduce the (typical-case) operation count from O(N2) to O(N):

When the point K is added and a broken corner is found, we store the index of
one of the three generating points involved in that corner. At the next time step,
when the point K is added, the search for a broken corner starts from one of the
corners of the polygon Pk. When the configurations of the generating points on suc-
cessive time steps are close, this procedure has the effect of making the number of
operations in step (i) independent of N. The operation count for the construction of
all N polygons then becomes O(N). In general the number of operations varies
smoothly (roughly speaking) with the distance between the configurations of the
generating points on successive time steps. This is a desirable situation, because it
means that the amount of work depends on the essential difficulty of the task.

The algorithm outlined above for adding point K is facilitated by the following
data structure, which is based on the fact that each corner has 3 neighboring cor-
ners and three generating points associated with it. To store this information, we
use two arrays, ICR(L, I) and IPT(L, I), where L = 1, 2, 3 and I= 1, 2 ,..., NCRS.
Thus NCRS is the number of corners, ICR(L, I) is the Lth generating point of cor-
ner I. In these lists, the three corners and the three generating points of corner Z are
stored in counterclockwise order. Moreover, the lists are correlated with each other
according to the following rule: Among the three generating points of corner Z,
IPT(L, I) is the only one that is not involved in the corner TCR(L, I) (see Fig. 4).

VORONOI MESH ON A SPHERE 185

FIG. 4. For a given corner (large hollow circle) the three generating points (PI, P2, P,) are stored in
counterclockwise order as are its three neighboring corners (C,, C2, C,). The two lists are correlated so
that P, is opposite C,.

A subroutine SPOTCR(Z) is provided that locates corner Z on the sphere. This
routine simply finds the center of the spherical cap defined by the three generating
points taken in counterclockwise order. It stores the coordinates of the center in the
arrays XCR(Z), YCR(Z), ZCR(Z) and the square of the radius of the cap in an array
RAD2(Z). We again note that we use the Euclidean radius lJ? - xi1 instead of the
spherical radius 1 F - Xi1 s.

The arrays initialized by SPOTCR are used in the test that determines whether
corner Z is broken by the generating point K with coordinates X(K), Y(K), Z(K).
The FORTRAN test is simply

IF((X(K) - XCR(Z))**2 + (Y(K) - YCR(Z))**2

+ (Z(K) - ZCR(Z))**2 - RAD2(Z)).

A negative result indicates that the corner is broken.
We can now describe how this data structure is used to implement steps (it(iv)

of the algorithm for adding the point K. Step (i) starts from a given corner and
looks at the neighbors of this corner, at the neighbors of the neighbors, and so on,
until a broken corner is found. The required neighbors are found in the list ICR. To
avoid testing any corner twice, a logical array FLAGB is used. When
FLAGB(Z) = .TRUE., the corner Z has already been tested. A list of the tested cor-
ners is also generated during the search. This list can be used at the end to reset
FLAGB = .FALSE. without performing O(N) operations.

Step (ii), the search for all of the broken corners, starts from the broken corner
found in step (i). The search has the same structure as before, except that only the
neighbors of broken corners are tested, since the set of broken corners is connected.
During this search, the array FLAGB is used in a slightly different way:
FLAGB(Z) = .TRUE. now indicates that corner Z is broken. A list of broken cor-
ners, LISTB, is generated during the search in the following way. Initially LISTB
contains only the single broken corner that was found in step (i). The entries in
LISTB are examined in sequence, and their neighboring corners are tested unless

186 AUGENBAUMAND PESKIN

FLAGB indicates that they are known to be broken. When new broken corners are
found, they are added to the end of LISTSB and flagged in FLAGB. Only one
sweep through LISTB is required. When the end of LISTB is encountered, all of the
broken corners have been found.

In step (iii) the new corners are found. Each new corner is located on an edge
joining a broken corner I1 and an unbroken corner 12 = ICR(LA, 11). The new cor-
ner is assigned an index of one of the broken corners until these indices are used up.
Then new indices are assigned. Let the index assigned to the new corner be INEW,
and let LB, LC be such that (LA, LB, LC) is a cyclic permutation of (1,2,3). Then
the three points that determine the new corner are, in counterclockwise order,

IPT(1, INEW) = K

IPT(2, INEW) = IPT(LB, 11)

IPT(3, INEW) = IPT(LC, 11)

We also need to know the three neighboring corners of the new corner INEW. One
of these is the unbroken corner 12. The other two will be new corners, which are
not yet determined. To facilitate the task of linking together the new corners into a
new polygon the following information is stored in an array NEXTCR,

NEXTCR(IPT(LB, 11)) = INEW.

Once this information has been stored, step (iv) can be accomplished in a single
sweep around the new polygon without any searching. Given a new corner I, the
procedure for finding the next new corner 12 around the polygon is simply

12 = NEXTCR (IPT(3, I)).

This completes our description of the algorithm that adds a point (ADP).

3. INITIALIZATION

The above-described algorithm for adding a point is dependent on the arrays of
the previous structure being stored and correlated correctly. Thus it is essential that
the initial configuration be correlated correctly. We now describe a simple
procedure to construct an initial Voronoi diagram simply and efficiently so that an
arbitrary number of points can be added using the addition algorithm.

Suppose that we have N generating points {Xi, X2,..., Y”> with which to con-
struct the Voronoi diagram. The smallest number of points needed to construct a
nondegenerate Voronoi diagram is four. Since three points are needed to generate a
corner, by taking xi ,..., Z4 as our initial generating points we have a Voronoi
diagram consisting of four distinct spherical polygons (Pi, Pz, P3, P4) and four cor-

VORONOI MESH ON A SPHERE 187

ners (XC(l),..., XC(4)). Once we set up the initial data structure the rest of the
generating points Xj, j = 5,..., N can be added one at a time.

The three points that make up corner IC are stored in IPT(L, IC) L = 1,2,3, as
follows. The number given to the corner made up by any three of the four
generating points is the same as the fourth generating point, i.e.,

Note that the three points in IPT(L, IC) L = 1,2,3 that make up corner IC are not
necessarily stored in counterclockwise order yet. In fact the coordinates of the cor-
ners have not been determined yet. To determine the corners IC we simply call
SPOTCR(IC), which will determine the coordinates of corner IC assuming
IPT(L, IC) to be stored in counterclockwise order.

We can now check that the entries in IPT(L, IC) are stored in counterclockwise
order. Recall that there are two points on the sphere that are equidistant from three
given points. We chose the one, in SPOTCR, by using the right-handed rule,
assuming IPT(L, IC) to be stored in counterclockwise order. To check that we have
the right corner, we test to see if the distance from corner IC to any of its
generating points IPT(L, IC) (RAD2(IC)) is less than the distance from corner IC
to the fourth point, (RAD3(IC)) not used to generate IC. If the distance is less,
then IPT is left alone. However, if corner IC is closer to the fourth point we want to
choose the other possible corner as corner IC. To do this we switch the entries
IPT(2, IC) with IPT(3, IC) and call SPOTCR(IC) again. By doing this for all four
corners we ensure that IPT is stored in counterclockwise order.

All that remains is to define ICR(L, IC), containing three neighboring corners of
corner IC, so that (i) the neighbors of corner IC, ICR (L, IC) # IC; (ii) its entries
are stored in counterclockwise order; and (iii) its entries are correlated to the
entries of IPT as defined before (i.e., among the three generating points of corner
IC, IPT(L, IC) is the only one that is not involved in the corner ICR(L, IC). This
can all be accomplished by simply initializing

ICR(L, IC) = IPT(L, IC),
L = 1, 2, 3,
IC = 1, 2, 3, 4.

The initialization routine consists of:

(i) Define entries for IPT(L, IC), L = 1, 2, 3, IC = 1, 2, 3, 4.
(ii) Compute corners E(IC).
(iii) Test if IPT is defined correctly.
(iv) Define entries for ICR(L, IC).

The routine that does the initialization is called INADP. By combining INADP

188 AUGENBAUM AND PESKIN

with ADP we now have a complete algorithm for constructing a Voronoi diagram
from an arbitrary number of generating points.

Grid Generation

While it is true that the algorithm will work for any random distribution of
points, it is desirable for most applications to have a grid which is as uniform as
possible. It is known, however, that there is no equipartition of the sphere when the
number of points is greater than 20. We have found that the following simple
procedure, suggested by the Voronoi construction, yields large grids with more or
less equal area polygons and some nice symetries.

We start with one of the regular polyhedrons which can be inscribed in the
sphere (e.g., tetrahedron). We then take its vertices as our first group of N, points.
We initialize the construction with points X(l),..., X(4), and then add points (if any)
X(5),..., X(N,) using ADP. We now have N, spherical polygons with 2N, - 4 cor-
ners. Since each corner is equidistant from its three generating points it is logical to
use the set of 2N, - 4 corners as our next set of points to add. We then add points
X(N, + lx..., x(3N, -4) one by one using ADP. After adding the 2N, -4
additional points we now have 3N, - 4 polygons with 2(3N, - 4) - 4 corners. This
procedure can be repeated automatically until a grid that is line enough for the par-
ticular application has been generated.

In Figs. 5 and 6 we show the grids generated by 5 and 6 applications of this
procedure starting with an inscribed tetrahedron with vertices at

(0, 0, l)v (sin?, 0, i),

i -sin-, 2 1.2z7 3 sin .,2z7 -, 3 - - 2 1 > , (- -sin-, 2 1 2L7 3 -sin’---, 2zl 3 - - 2 1 > .

FIG. 5. Stereographic projection onto equatorial plane of Northern Hemisphere of Voronoi diagram
consisting of 488 spherical polygons based on an iterative procedure for adding points and starting from
an initial configuration derived from an inscribed tetrahedron.

VORONOI MESH ON A SPHERE 189

FIG. 6. Stereographic projection onto equatorial plane of Northern Hemisphere of Voronoi diagram
consisting of 1460 spherical polygons. This configuration was built up from an initial configuration of an
inscribed tetrahedron.

The resulting grids contain 488 points with 5 repetitions of the procedure, and 1460
points with 6 repetitions.

Note that we also have the option to check the points as they are being added
and to discard a point if it will be added too close to an existing point.

4. NUMERICAL EXPERIMENTS

We now describe some timing tests which give empirical support to the operation
count that was claimed above for both the “typical” case (O(N)) and the “worst”
case (O(M)) estimates.

We have placed clock calls into the code so that computing times were printed
after the addition of every 100 points. The code was run on an Amdahl V6 serial
computer and the results, for three test cases, are summarized in Table I for the grid
shown in Fig. 6. The three test cases correspond to a “worst” case, “best” case, and
“typical” case. Similar results were also obtained with a completely random grid.

Case I corresponds to a “worst” case. In this case no a priori information was
used in the search for the first broken corner. Each point that was added started its
search for a broken corner from point number 1. Table I shows that the work in
adding 100 points increases linearly with N, and that the amount of work in con-
structing a Voronoi mesh of N points in O(N’).

Case II represents the “best” case. In this case perfect a priori information was
provided. This is accomplished by using the points from case I and regenerating the
Voronoi mesh. Now, however, each point that is added starts its search for the first
broken corner from the list of first broken corners (array ICR) that was generated
in case I. As each point is added a broken corner will be found on the first guess

190 AUGENBAUM AND PESKIN

TABLE I

Timing Results for Construction of Voronoi Mesh

Number
of points I (Worst)

Time (set)

II (Best) III (Typical)

100 0.05 0.02 0.03
200 0.19 0.05 0.07
300 0.39 0.08 0.12
400 0.68 0.11 0.17
500 1.17 0.14 0.22
600 1.58 0.17 0.27
700 2.08 0.20 0.33
800 2.89 0.23 0.38
900 3.61 0.27 0.45

1000 4.49 0.30 0.53
1100 5.50 0.33 0.57
1200 6.58 0.36 0.63
1300 1.66 0.39 0.68
1400 9.43 0.43 0.77
1460 10.82 0.44 0.85

NOW. Case I: initial construction with no a priori information + “worst” case O(N*). Case II: initial
construction with a priori information -+ “best” case O(N). Case III: Voronoi mesh is reconstructed
after moving the points with a physical flow field. Information from previous construction is used +
“typical” case O(N).

and no extra searching is required. Table I shows that the work in adding
100 points in independent of N, and that the total amount of work in constructing a
Voronoi mesh of N points is O(N).

Case III represents a “typical” case. In this case we simulate a typical Lagrangian
fluid dynamics calculation [1, 31 by moving the points Xj off the sphere by
approximating the equation dTj/dr = Dj with the discrete equation

x,?=x;+At ui”, j = 1, 2 ,..., N,

where X; = (X;, Y;, 2;). ZT is then projected back onto the sphere by

(1)

p
E+l=&.

J (2)

The velocity Uj -n + 1 is then evaluated at the new points X; + l. The new Voronoi mesh
is then constructed. This completes one iteration. In our experiment we have chosen
u, to correspond with the Rossby-Haurwitz wave used in meteorology and given
by the stream function [18],

t&e, A) = - w sin 8 + 0 cos4 8 sin 0 cos 41, (3)

VORONOI MESH ON A SPHERE 191

where A= longitude, 8 = latitude, o = rotation rate of earth. A time step of 2 h
(which in large by meterological standards) was used. After six iterations this
procedure simulates a 12-h calculation. The results are displayed in Table I. As in
case II, information from the previous Voronoi construction is used to start the
search for the first broken corner as each point is added. This drastically reduces
the searching involved in a “typical” case. The results in Table I show that the work
in adding 100 points is independent of N and that the total amount of work in con-
structing the Voronoi mesh is O(N).

5. CONCLUSION

In this paper we have presented an efficient construction of the Voronoi diagram
on the sphere. Our algorithm differs from other constructions of the Voronoi
diagram in that it is based on adding one point at a time to build up the complete
polygonal structure. The algorithm is particularly well suited for use in time-depen-
dent numerical codes where information from constructing the Voronoi diagram at
the previous time step can be used to reduce the number of operations to O(N)
when the changes from one time step to the next are small. The construction does
not break down, however, even when the changes are very large.

Another advantage of adding the points one at a time is that it is quite simple to
add more points to grid sparse regions of the flow during a calculation without
recomputing the whole grid. This should prove useful with the new adaptive grid
codes being developed [4].

The fortran program SPHVOR is available, from the first author, upon request.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge many helpful discussions with Donald Goldfarb during the initial
development of the algorithm described in this paper. The computations were carried out at the Courant
Mathematics and Computing Laboratory of New York University under Contract DE-AC02-
76ER03077 with the U. S. Department of Energy, and at the NASA-Goddard Space Flight Center where
the first author is a National Research Council Resident Research Associate.

REFERENCES

1. J. AUGENBAUM, “A New Lagrangian Method for the Shallow Water Equations,” Ph. D. thesis, New
York University, New York, 1982.

2. J. AUGENBAUM, J. Comput. Phys. 53 (1984), 240.
3. J. AUGENBAUM, A Lagrangian method for the shallow water equation based on Voronoi mesh-flows

on a rotating sphere, in “Proceedings of Free Lagrangian Methods Conference,” Springer-Verlag,
New York/Berlin, in press.

4. M. BERGER, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” Ph. D.
thesis, Stanford University Stanford, Calif., 1982.

5. W. BRISTOW, J. P. DUSSAULT, AND B. L. Fox, J. Comput. Phys. 29 (1978), 81.

581/59/2-Z

192 AUGENBAUM AND PESKIN

6. w. P. CROWLEY, “Proceedings of the Second International Conference on Numerical Methods in
Fluid Mechanics”, Springer-Verlag, New York/Berlin, 1971.

7. J. DUKOWICZ, Lagrangian fluid dynamics using the Voronoi-Delaunay mesh in “Numerical
Methods for Coupled Problems,” Pineridge Press, Swansea, U. K., 1981.

8. J. L. FINNEY, J. Comput. Phys. 32 (1979), 137.
9. M. FRITTS AND J. BORIS, J. Comput. Phys. 31 (1979), 173.

10. F. A. HARLOW, Proc. Symp. Appl. Meth. 15 (1963), 289.
11. C. HIRT, A. A. AMSVEN, AND J. L. COOK, J. Compu~. Phys. 14 (1974), 277.
12. F. MESINGER, Mon. Weather Reo. 99 (1971), 15.
13. C. S. PESKIN, A Lagrangian method for the Navier Stokes equations with large deformations,

preprint.
14. M. I. SHAMUS AND D. HOEY, “Proceedings, 16th Ann. IEEE Symposium on Foundations of

Algorithms, Berkeley, Calif., 1975.”
15. M. TANEMURA, T. OGAWA, AND N. OGITA, J. Comput. Phys. 51 (1983), 191.
16. H. E. TREASE, “A Two Dimensional Free Lagrangian Hydrodynamics Model,” Ph. D. thesis, Univer-

sity of Illinois at Urbana-Champaign, 1981.
17. G. VORONOI, J. Reine Angew Math. 134 (1908), 198.
18. D. L. WILLIAMSON AND G. L. BROWNING, J. Appl. Meteorol. 9 (1973), 272.
19. C. BORCERS AND C. S. F’ESKIN, A Lagrangian method based on the Voronoi diagram for the incom-

pressible Navier-Stokes equation on a periodic domain, in “Proceeding of the Free Lagrangian
Methods Conference,” Springer-Verlag, New York/Berlin, in press.

